skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wagner, Danielle N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Good indoor air quality in office environments is essential for occupant health and productivity. In open-plan offices, displacement ventilation has been recognized for its higher efficiency compared to mixing ventilation. This study evaluates the performance of displacement ventilation in an open-plan office under cooling and heating conditions, considering various supply ventilation rates, supply air temperatures, and occupancy levels. Field measurements were conducted over three months in a living laboratory office in a high-performance building. The indoor environment was controlled by an independent variable air volume (VAV) air conditioning system. The supply ventilation rate ranged from 6 to 12 h^−1. Real-time measurements of carbon dioxide (CO2) concentrations in the supply air, return air, and breathing zone of the office were conducted to assess occupants’ exposure to CO2 and ventilation efficiency. The results show that the supply ventilation rate plays an important role in shaping the air distribution and overall effectiveness of the mechanical ventilation system. Higher supply ventilation rates can enhance air distribution robustness, improving ventilation efficiency and reducing CO2 exposure under both cooling and heating conditions. These findings also suggest the need for an optimized control logic that differs from the conventional control logic used in VAV systems. Specifically, during the heating condition of displacement ventilation, it is recommended to maintain the supply ventilation rate at a higher level to effectively mitigate the impact of occupant behavior on air quality, minimize CO2 exposure risks, and ensure a more robust and reliable indoor air distribution. 
    more » « less
  2. Science for Society Buildings account for a significant fraction of the land area in cities and actively exchange air with their proximate outdoor environments via mechanical ventilation systems. However, the direct impact of buildings on urban air pollution remains poorly characterized. Due to reductions in traffic-associated emissions of volatile organic compounds (VOCs), volatile chemical products, which are widely used inside buildings, have become a major VOC source in urban areas. Indoor-generated VOCs are likely to be an important contributor to the VOC burden of the urban atmosphere, and ventilation systems provide a pathway for VOCs to be released outdoors. Here, we show how modern buildings act as significant emission sources of VOCs for the outdoor environment. Our results demonstrate that future air quality monitoring efforts in cities need to account for direct VOC discharge from buildings in order to capture emerging sources of environmental pollution that can impact the climate and human health. Summary Urban air undergoes transformations as it is actively circulated throughout buildings via ventilation systems. However, the influence of air exchange between outdoor and indoor atmospheres on urban air pollution is not well understood. Here, we quantify how buildings behave as a dynamic source and sink for urban air pollutants via high-resolution online mass spectrometry measurements. During our field campaign in a high-performance office building, we observed that the building continually released volatile organic compounds (VOCs) into the urban air and removed outdoor ozone and fine particulate matter. VOC emissions from people, their activities, and surface reservoirs result in significant VOC discharge from the building to the outdoors. Per unit area, building emissions of VOCs are comparable to traffic, industrial, and biogenic emissions. The building source-sink behavior changed dynamically with occupancy and ventilation conditions. Our results demonstrate that buildings can directly influence urban air quality due to substantial outdoor-indoor air exchange. 
    more » « less